Quasi-3-D resistivity imaging – mapping of heterogeneous frozen ground conditions using electrical resistivity tomography

Up to now an efficient 3-D geophysical mapping of the subsurface in mountainous environments with rough terrain has not been possible. A merging approach of several closely spaced 2-D electrical resistivity tomography (ERT) surveys to build up a quasi-3-D model of the electrical resistivity is prese...

Full description

Bibliographic Details
Main Authors: Kneisel, C., Bast, A., Schwindt, D.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/tcd-3-895-2009
https://tc.copernicus.org/preprints/tc-2009-25/
Description
Summary:Up to now an efficient 3-D geophysical mapping of the subsurface in mountainous environments with rough terrain has not been possible. A merging approach of several closely spaced 2-D electrical resistivity tomography (ERT) surveys to build up a quasi-3-D model of the electrical resistivity is presented herein as a practical compromise for inferring subsurface characteristics and lithology. The ERT measurements were realised in a small glacier forefield in the Swiss Alps with complex terrain exhibiting a small scale spatial variability of surface substrate. To build up the grid for the quasi-3-D measurements the ERT surveys were arranged as parallel profiles and perpendicular tie lines. The measured 2-D datasets were collated into one quasi-3-D file. A forward modelling approach – based on studies at a permafrost site below timberline – was used to optimize the geophysical survey design for the mapping of the mountain permafrost distribution in the investigated glacier forefield. Quasi-3-D geoelectrical imaging is a useful method for mapping of heterogeneous frozen ground conditions and can be considered as a further milestone in the application of near surface geophysics in mountain permafrost environments.