A computationally efficient statistically downscaled 100 m resolution Greenland product from the regional climate model MAR

The Greenland Ice Sheet (GrIS) has been contributing directly to sea level rise and this contribution is projected to accelerate over next decades. A crucial tool for studying the evolution surface mass loss (e.g., surface mass balance, SMB) consists of regional climate models (RCMs) which can provi...

Full description

Bibliographic Details
Main Authors: Tedesco, Marco, Colosio, Paolo, Fettweis, Xavier, Cervone, Guido
Format: Text
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.5194/tc-2023-56
https://tc.copernicus.org/preprints/tc-2023-56/
Description
Summary:The Greenland Ice Sheet (GrIS) has been contributing directly to sea level rise and this contribution is projected to accelerate over next decades. A crucial tool for studying the evolution surface mass loss (e.g., surface mass balance, SMB) consists of regional climate models (RCMs) which can provide current estimates and future projections of sea level rise associated with such losses. However, one of the main limitations of RCMs is the relatively coarse horizontal spatial resolution at which outputs are currently generated. Here, we report results concerning the statistical downscaling of the SMB modeled by the Modèle Atmosphérique Régional (MAR) RCM from the original spatial resolution of 6 km to 100 m building on the relationship between elevation and mass losses in Greenland. To this goal, we developed a geospatial framework that allows the parallelization of the downscaling process, a crucial aspect to increase the computational efficiency of the algorithm. The results obtained in the case of the SMB, assessed through the comparison of the modeled outputs with in-situ SMB measurements, show a considerable improvement in the case of the downscaled product with respect to the original, coarse output. In the case of the downscaled MAR product, the coefficient of determination (R 2 ) increases from 0.868 for the original MAR output to 0.935 for the downscaled product. Moreover, the value of the slope and intercept of the linear regression fitting modeled and measured SMB values shifts from 0.865 for the original MAR to 1.015 for the downscaled product in the case of the intercept and from the value -235 mm (original) to -57 mm (downscaled) in the case of the slope, considerably improving upon results previously published in the literature.