Smoothed Particle Hydrodynamics Implementation of the Standard Viscous-Plastic Sea-Ice Model and Validation in Simple Idealized Experiments

The Viscous-Plastic (VP) rheology with an elliptical yield curve and normal flow rule is implemented in a Lagrangian modelling framework using the Smoothed Particle Hydrodynamics (SPH) meshfree method. Results show, from perturbation analysis of SPH sea-ice dynamic equations, that the classical SPH...

Full description

Bibliographic Details
Main Authors: Marquis, Oreste, Tremblay, Bruno, Lemieux, Jean-François, Islam, Mohammed
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.5194/tc-2022-163
https://tc.copernicus.org/preprints/tc-2022-163/
Description
Summary:The Viscous-Plastic (VP) rheology with an elliptical yield curve and normal flow rule is implemented in a Lagrangian modelling framework using the Smoothed Particle Hydrodynamics (SPH) meshfree method. Results show, from perturbation analysis of SPH sea-ice dynamic equations, that the classical SPH particle density formulation expressed as a function of sea-ice concentration and mean ice thickness, leads to incorrect plastic wave speed. We propose a new formulation for particle density that gives a plastic wave speed in line with theory. In all cases, the plastic wave in the SPH framework is dispersive and depends on the smoothing length (i.e., the spatial resolution) and on the SPH kernel employed in contrast with its finite difference method (FDM) implementation counterpart. The steady-state solution for the simple 1D ridging experiment is in agreement with the analytical solution within an error of 1 %. SPH is also able to simulate a stable upstream ice arch in an idealized domain representing the Nares Strait in low wind regime (5.3 [m · s −1 ]) with an ellipse aspect ratio of 2, an average thickness of 1 [m] and free-slip boundary conditions in opposition to the FDM implementation that requires higher shear strength to simulate it. In higher wind regime (7.5 [m · s −1 ]) no stable ice arches are simulated — unless the thickness is increased — and the ice arch formation showed no dependence on the size of particles contrary to what is observed in the discrete element framework. Finally, the SPH framework is explicit, can take full advantage of parallel processing capabilities and show potential for pan-arctic climate simulations.