Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica

Drifting snow is a widespread feature over the Antarctic ice sheet, whose climatological and hydrological significance at the continental scale have been consequently investigated through modelling and satellite approaches. While field measurements are needed to evaluate and interpret model and sate...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Author: Amory, Charles
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/tc-14-1713-2020
https://tc.copernicus.org/articles/14/1713/2020/
Description
Summary:Drifting snow is a widespread feature over the Antarctic ice sheet, whose climatological and hydrological significance at the continental scale have been consequently investigated through modelling and satellite approaches. While field measurements are needed to evaluate and interpret model and satellite products, most drifting-snow observation campaigns in Antarctica involved data collected at a single location and over short time periods. With the aim of acquiring new data relevant to the observation and modelling of drifting snow in Antarctic conditions, two remote locations in coastal Adélie Land (East Antarctica) that are 100 km apart were instrumented in January 2010 with meteorological and second-generation IAV Engineering acoustic FlowCapt™ sensors. The data, provided nearly continuously so far, constitute the longest dataset of autonomous near-surface (i.e. within 2 m) measurements of drifting snow currently available over the Antarctic continent. This paper presents an assessment of drifting-snow occurrences and snow mass transport from up to 9 years (2010–2018) of half-hourly observational records collected in one of the Antarctic regions most prone to snow transport by wind. The dataset is freely available to the scientific community and can be used to complement satellite products and evaluate snow-transport models close to the surface and at high temporal frequency.