Strong warming of subarctic forest soil deteriorated soil structure via carbon loss – Indications from organic matter fractionation

Net loss of soil organic carbon (SOC) from terrestrial ecosystems is a likely consequence of global warming and this may affect key soil functions. Strongest changes in temperature are expected to occur at high northern latitudes, with boreal forest and tundra as prevailing land-cover types. However...

Full description

Bibliographic Details
Published in:Quaternaire
Main Authors: Poeplau, Christopher, Sigurðsson, Páll, Sigurðsson, Bjarni D.
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/soil-2019-41
https://www.soil-discuss.net/soil-2019-41/
Description
Summary:Net loss of soil organic carbon (SOC) from terrestrial ecosystems is a likely consequence of global warming and this may affect key soil functions. Strongest changes in temperature are expected to occur at high northern latitudes, with boreal forest and tundra as prevailing land-cover types. However, specific ecosystem responses to warming are understudied. We used a natural geothermal soil warming gradient in an Icelandic spruce forest (0–17.5 °C warming intensity) to assess changes in SOC content in 0–10 cm (topsoil) and 20–30 cm (subsoil) after 10 years of soil warming. Five different SOC fractions were isolated and the amount of stable aggregates (63–2000 µm) was assessed to link SOC to soil structure changes. Results were compared to an adjacent, previously investigated warmed grassland. Soil warming had depleted SOC in the forest soil by −2.7 g kg −1 °C −1 (−3.6 % °C −1 ) in the topsoil and −1.6 g kg −1 °C −1 (−4.5 % °C −1 ) in the subsoil. Distribution of SOC in different fractions was significantly altered, with particulate organic matter and SOC in sand and stable aggregates being relatively depleted and SOC attached to silt and clay being relatively enriched in warmed soils. The major reason for this shift was aggregate break-down: topsoil aggregate mass proportion was reduced from 60.7 ± 2.2 % in the unwarmed reference to 28.9 ± 4.6 % in the most warmed soil. Across both depths, loss of one unit SOC caused a depletion of 4.5 units aggregated soil, which strongly affected bulk density (R 2 = 0.91 when correlated to SOC and R 2 = 0.51 when correlated to soil mass in stable aggregates). The proportion of water extractable carbon increased with decreasing aggregation, indicating an indirect SOC protective effect of aggregates > 63 µm. Topsoil changes in total SOC and fraction distribution were more pronounced in the forest than in the adjacent warmed grassland soils, due to higher and more labile initial SOC. However, no ecosystem effect was observed in the response of subsoil SOC and fraction distribution. Whole profile differences across ecosystems might thus be small. Changes in soil structure upon warming should be studied more deeply and taken into consideration when interpreting or modelling biotic responses to warming.