Observational Study on the Variability of Mixed Layer Depth in the Bering Sea and the Chukchi Sea in the Summer of 2019

Based on the high-resolution CTD data from 58 stations in the Bering Sea and the Chukchi Sea in the summer of 2019, the mixed layer depth (MLD) was obtained according to the density difference threshold method. It was verified that the MLD could be estimated more accurately by using a criterion of 0...

Full description

Bibliographic Details
Main Authors: Jiao, Xiaohui, Zhang, Jicai, Li, Chunyan
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/os-2021-7
https://os.copernicus.org/preprints/os-2021-7/
Description
Summary:Based on the high-resolution CTD data from 58 stations in the Bering Sea and the Chukchi Sea in the summer of 2019, the mixed layer depth (MLD) was obtained according to the density difference threshold method. It was verified that the MLD could be estimated more accurately by using a criterion of 0.125 kg/m 3 in this region. The MLD in the Bering Sea basin was larger than that in the Bering Sea shelf, and both of them were smaller than that in the Bering Sea slope. The MLD increased northward both in the Chukchi Sea shelf and the Chukchi Sea slope. The farther northward, the greater the difference between the MLD calculated from temperature (MLDt) and the MLD calculated from density (MLDd) was, and the more important the role of salinity was in determining the MLD. The larger MLD (refer to MLDd specifically) in the Bering Sea slope might be due to the enhancement of mixing caused by the Bering Slope Current (BSC) and eddies. The horizontal advection of the Bering Sea Anadyr Water and the Alaska Coastal Water in the Bering Sea shelf led to the shallower MLD in the central transition zone. The northward increase of the MLD in the Chukchi Sea might be related to the low-salinity seawater resulting from the melting of sea ice in summer. The spatial variation of MLD was more closely related to the surface momentum flux than the sea surface buoyancy flux, and the wave had little effect.