A comparison between smaller (>63 μm) and larger (>150 μm) planktonic foraminiferal faunas from the Pleistocene of ODP Site 1073 (Leg 174A), New Jersey margin, NW Atlantic Ocean
Planktonic foraminiferal faunas have been studied from the Pleistocene of ODP Site 1073 (Leg 174A), New Jersey margin, NW Atlantic Ocean and their abundances have been compared in the >63 μm and >150 μm size-fractions from the same samples. Trends in the relative abundance of many species are...
Published in: | Journal of Micropalaeontology |
---|---|
Main Author: | |
Format: | Text |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://doi.org/10.1144/jm.21.2.137 https://jm.copernicus.org/articles/21/137/2002/ |
Summary: | Planktonic foraminiferal faunas have been studied from the Pleistocene of ODP Site 1073 (Leg 174A), New Jersey margin, NW Atlantic Ocean and their abundances have been compared in the >63 μm and >150 μm size-fractions from the same samples. Trends in the relative abundance of many species are similar in the two size-fractions, although the general level varies considerably. The mean abundance and ranges of Neogloboquadrina pachyderma (sinistral), N. pachyderma (dextral), Globorotalia inflata and Globigerina bulloides are greater in the >150 μm size-fraction compared with the >63 μm size-fraction. Turborotalita quinqueloba, Globigerinita uvula, G. glutinata, G. clarkei, and juvenile species are more abundant in the >63 μm size-fraction than the >150 μm size-fraction. Peaks ( c. 60%) in abundance of G. uvula occur in the >63 μm size-fraction only, although the causes of these patterns are unclear. The data suggest that, in general, consistent palaeoclimatic/palaeoceanographic information is achieved by studying planktonic foraminiferal faunas from either size-fraction. However, because particular smaller species are either under-represented or even absent from the larger (>150 μm) size-fraction, the smaller (>63 μm) size-fraction must be included in studies of planktonic foraminifera. Furthermore, studies that involve planktonic foraminifera in the >63 μm size-fraction could provide different transfer function estimates for sea surface temperatures in areas where workers have only used larger (>125 μm and >150 μm) size-fractions. |
---|