Using Arctic ice mass balance buoys for evaluation of modelled ice energy fluxes

Arctic sea ice has declined rapidly over recent decades. Models predict that the Arctic will be nearly ice-free by mid-century, but the spread in predictions of sea ice extent is currently large. The reasons for this spread are poorly understood, partly due to a lack of observations with which the p...

Full description

Bibliographic Details
Main Authors: West, Alex, Collins, Mat, Blockley, Ed
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/gmd-2019-113
https://gmd.copernicus.org/preprints/gmd-2019-113/
Description
Summary:Arctic sea ice has declined rapidly over recent decades. Models predict that the Arctic will be nearly ice-free by mid-century, but the spread in predictions of sea ice extent is currently large. The reasons for this spread are poorly understood, partly due to a lack of observations with which the processes by which Arctic atmospheric and oceanic forcing affect sea ice state can be examined. In this study, a method of estimating fluxes of top melt, top conduction, basal conduction and ocean heat flux from Arctic ice mass balance buoy elevation and temperature data is presented. The derived fluxes are used to evaluate modelled fluxes from the coupled climate model HadGEM2-ES in two densely sampled regions of the Arctic, the North Pole and Beaufort Sea. The evaluation shows the model to overestimate the magnitude of summer top melting fluxes, and winter conductive fluxes, results which are physically consistent with an independent sea ice and surface energy evaluation of the same model.