Global simulation of dissolved 231Pa and 230Th in the ocean and the sedimentary 231Pa∕230Th ratios with the ocean general circulation model COCO ver4.0

Sedimentary <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup&...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Sasaki, Yusuke, Kobayashi, Hidetaka, Oka, Akira
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.5194/gmd-15-2013-2022
https://gmd.copernicus.org/articles/15/2013/2022/
Description
Summary:Sedimentary <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="b118a40effcf5fa5b508e16481bf10eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00003.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00003.png"/></svg:svg> ratios provide clues to estimate the strength of past ocean circulation. For its estimation, understanding the processes controlling the distributions of 231 Pa and 230 Th in the ocean is important. However, simulations of dissolved and particulate 231 Pa and 230 Th in the modern ocean, recently obtained from the GEOTRACES project, remain challenging. Here we report a model simulation of 231 Pa and 230 Th in the global ocean with COCO ver4.0. Starting from the basic water-column reversible scavenging model, we also introduced the bottom scavenging and the dependence of scavenging efficiency on particle concentration. As demonstrated in a previous study, the incorporation of bottom scavenging improves the simulated distribution of dissolved 231 Pa and 230 Th in the deep ocean, which has been overestimated in models not considering the bottom scavenging. We further demonstrate that introducing the dependence of scavenging efficiency on particle concentration results in a high concentration of dissolved 230 Th in the Southern Ocean as observed in the GEOTRACES data. Our best simulation can well reproduce not only the oceanic distribution of 231 Pa and 230 Th but also the sedimentary <math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="b8319888bc40921273c73b7cd1e5cbe6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00004.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00004.png"/></svg:svg> ratios. Sensitivity analysis reveals that oceanic advection of 231 Pa primarily determines sedimentary <math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c4b0423d41c5d81802398fc02d125a89"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00005.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00005.png"/></svg:svg> ratios. On the other hand, 230 Th advection and bottom scavenging have an opposite effect to 231 Pa advection on the sedimentary <math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="19b56b7d101a64fabbf8004913101743"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00006.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00006.png"/></svg:svg> ratios, reducing their latitudinal contrast. Our best simulation shows the realistic residence times of 231 Pa and 230 Th, but simulation without bottom scavenging and dependence of scavenging efficiency on particle concentration significantly overestimates the residence times for both 231 Pa and 230 Th in spite of similar distribution of sedimentary <math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">231</mn></msup><mi mathvariant="normal">Pa</mi><msup><mo>/</mo><mn mathvariant="normal">230</mn></msup><mi mathvariant="normal">Th</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="22b8c13296a4bf8bfe5fbb6a67ed48a5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-15-2013-2022-ie00007.svg" width="62pt" height="15pt" src="gmd-15-2013-2022-ie00007.png"/></svg:svg> ratios to our best simulation.