Processing methodology for the ITS_LIVE Sentinel-1 ice velocity product

The NASA MEaSUREs Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) project seeks to accelerate understanding of critical glaciers and ice sheet processes by providing researchers with global, low-latency, comprehensive and state-of-the-art records of surface velocities and ele...

Full description

Bibliographic Details
Main Authors: Lei, Yang, Gardner, Alex S., Agram, Piyush
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/essd-2021-393
https://essd.copernicus.org/preprints/essd-2021-393/
Description
Summary:The NASA MEaSUREs Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) project seeks to accelerate understanding of critical glaciers and ice sheet processes by providing researchers with global, low-latency, comprehensive and state-of-the-art records of surface velocities and elevations as observed from space. Here we describe the image-pair ice velocity product and processing methodology for ESA Sentinel-1 radar data. We demonstrate improvements to the core processing algorithm for dense offset tracking, “autoRIFT”, that provides finer resolution and higher accuracy data products with improved computational efficiency when compared to earlier versions. A novel calibration is applied to the data to correct for Sentinel-1A/B subswath- and full swath-dependent geolocation errors caused by systematic issues with the instruments. Sentinel-1’s C-band images are affected by variations in the total electron content of the ionosphere that results in large velocity errors in the azimuth (along-track) direction. To reduce these effects slant-range (line-of-sight or LOS) velocities are used and accompanied by LOS parameters that support map coordinate (x/y) velocity inversion from ascending and descending slant-range offset measurements, as derived from 2 image-pairs. The described product and methods comprise the MEaSUREs ITS_LIVE Sentinel-1 Image-Pair Glacier and Ice Sheet Surface Velocities: Version 2 ( https://its-live.jpl.nasa.gov ).