Linkage of tropical glaciation to supercontinents: a thermodynamic closure model

Precambrian tropical glaciations pose a significant challenge to our understanding of Earth’s climate. A popular explanation invokes runaway ice-albedo feedback leading to “iceball earth”, an extreme state conflicting however with the sedimentary evidence of an open oce...

Full description

Bibliographic Details
Main Author: Ou, Hsien-Wang
Format: Text
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.5194/esd-2023-32
https://esd.copernicus.org/preprints/esd-2023-32/
Description
Summary:Precambrian tropical glaciations pose a significant challenge to our understanding of Earth’s climate. A popular explanation invokes runaway ice-albedo feedback leading to “iceball earth”, an extreme state conflicting however with the sedimentary evidence of an open ocean and active hydrological cycle. We point out flawed physics of the runaway scenario, which overlooks potency of the ocean heat transport in deterring the perennial sea ice. Nor is frozen ocean needed for tropical glaciation as the latter requires only that the tropical land be cooled to below the marking temperature of the glacial margin, which is necessarily above the freezing point to counter the yearly accumulation. Since tropical glaciations generally coincide with Precambrian supercontinents, we posit that it is their blockage of the brighter tropical sun that causes the required cooling. To test this hypothesis, we formulate a minimal two-box model, which is nonetheless thermodynamically closed and yields lowering tropical/polar temperatures with increasing tropical land, whose crossings of the glacial marking temperature would divide non/polar/pan-glacial regimes—the last being characterized by tropical glaciation abutting an open ocean. Given the observed chronology of paleogeography, our theory may provide a unified account of the faint-young-sun paradox, Precambrian tropical glaciations and glacio-epochs through Earth’s history.