The influence of permafrost and other environmental controls on stream thermal sensitivity across Yukon, Canada

Thermal sensitivity, defined as the slope of a linear regression between stream and air temperature, is a useful indicator of the strength of coupling between atmospheric forcings and stream temperature, or conversely, of the presence of non-atmospheric thermal influences such as groundwater contrib...

Full description

Bibliographic Details
Main Authors: Szeitz, Andras Janos, Carey, Sean K.
Format: Text
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2024-1741
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-1741/
Description
Summary:Thermal sensitivity, defined as the slope of a linear regression between stream and air temperature, is a useful indicator of the strength of coupling between atmospheric forcings and stream temperature, or conversely, of the presence of non-atmospheric thermal influences such as groundwater contributions to streamflow. Furthermore, thermal sensitivity is known to be responsive to environmental change. This study expands the current state of knowledge of stream thermal sensitivity in cold, northern regions across catchment scales, investigates the environmental controls of thermal sensitivity across a range of catchment dispositions, and assesses the thermal influence of environmental conditions unique to cold regions, namely permafrost. We conducted a linear regression analysis relating mean daily air and stream temperature in 57 catchments in Yukon, Canada, with catchment areas ranging from 5.4 to 86,500 km 2 , and with catchment mean permafrost probabilities ranging from 0.0 to 0.99. Thermal sensitivities obtained from the linear regressions ranged from 0.14 to 0.84 °C °C -1 , with a median of 0.56 °C °C -1 , and the regression intercepts ranged from -0.07 to 7.60 °C, with the mean regression Nash-Sutcliffe efficiency = 0.81. Thermal sensitivity was positively related to catchment area, land covers representing surface water storage, and streamflow ‘flashiness’ or a lack of groundwater contributions. The greatest single environmental characteristic explaining the variance in thermal sensitivity was catchment topography and physiography (9 % variance explained); however, 39 % of the variance in thermal sensitivity was explained jointly by catchment physiography, land cover, and permafrost presence indicators, suggesting thermal sensitivity is the result of multiple interacting controls. Permafrost appeared to have indirect and offsetting effects on thermal sensitivity through its influence on separate and counter-acting processes controlling thermal ...