Glacier geometry limits the propagation of thinning in Patagonian Icefields

Climate change is causing a decline in glaciers globally, with the possibility that some may disappear during this century. Recent findings postulate that the geometric glacier-topography configuration has the capacity to limit glacier thinning upstream. The Patagonian Icefields (PI), with 15,900 km...

Full description

Bibliographic Details
Main Authors: Morales, Bastian, Somos-Valenzuela, Marcelo, Lillo, Mario, Irarrazaval, Iñigo, Farias, David, Lizama, Elizabet, Rivera, Diego, Fernández, Alfonso
Format: Text
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2024-1053
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-1053/
Description
Summary:Climate change is causing a decline in glaciers globally, with the possibility that some may disappear during this century. Recent findings postulate that the geometric glacier-topography configuration has the capacity to limit glacier thinning upstream. The Patagonian Icefields (PI), with 15,900 km² of glaciers, are the world's largest glacial freshwater reservoir after Antarctica and Greenland. In recent decades, it has been one of the areas with the greatest mass loss worldwide due to climate change. Our research explores the relationship between glacier geometry and changes in PI glaciers to determine regions vulnerable to thinning. We studied 45 major marine- and lake-terminating glaciers in PI using the Péclet number (Pe) based on the diffusive kinematic wave model to determine the geometric state of glaciers and as a metric of vulnerability to diffusive thinning. Locations with Pe ≤ 8 experienced greater thinning and retreat, suggesting an empirical limit that encompasses more than 90 % of ice thinning. The empirical limit is related to a significant change in the slope gradient and roughness of the subglacial topography at PI due to a knickpoint in the subglacial bed. On average, ~53 % of the total ice flow of PI glaciers is below the thinning limit. Therefore, due to the current geometric state and evolution, lake-terminating glaciers may propagate frontal thinning deep inland. The empirical thinning limit provides signals of priority glaciers to investigate considering current climate change projections.