Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions

In order to reduce the uncertainty of aerosol radiative forcing in global climate models, we need to better understand natural aerosol sources which are important to constrain the current and pre-industrial climate. Here, we analyze Particle Number Size Distributions (PNSD) collected during a year (...

Full description

Bibliographic Details
Main Authors: Brean, James, Beddows, David C. S., Asmi, Eija, Virkkula, Ari, Quéléver, Lauriane L. J., Sipilä, Mikko, Heuvel, Floortje, Lachlan-Cope, Thomas, Jones, Anna, Frey, Markus, Lupi, Angelo, Park, Jiyeon, Yoon, Young Jun, Weller, Ralf, Marincovich, Giselle L., Mulena, Gabriela C., Harrison, Roy M., Dall´Osto, Manuel
Format: Text
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2024-987
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-987/
Description
Summary:In order to reduce the uncertainty of aerosol radiative forcing in global climate models, we need to better understand natural aerosol sources which are important to constrain the current and pre-industrial climate. Here, we analyze Particle Number Size Distributions (PNSD) collected during a year (2015) across four coastal and inland Antarctic research bases (Halley, Marambio, Concordia/Dome C and King Sejong). We find that the four Antarctic locations have striking differences in PNSD, stressing multiple aerosol sources and processes likely exist. We utilise k-means cluster analysis to separate the PNSD data into six main categories. Nucleation and Bursting PNSDs occur 28–48 % of the time between sites, most commonly at coastal sites Marambio and King Sejong where air masses mostly come from the west and travel over extensive regions of sea ice, marginal ice, and open ocean, and likely arise from new particle formation. Aitken high, Aitken low, and bimodal PNSDs occur 37–68 % of the time, most commonly at Concordia/Dome C on the Antarctic Plateau, and likely arise from atmospheric transport and aging from aerosol originating likely in both coastal boundary layer and free troposphere. Pristine PNSDs with low aerosol concentrations occur 12–45 % of the time, most common at Halley located at low altitudes and far from the coastal melting ice, and influenced by air masses from the west. The Antarctic Atmospheric circulation has a strong control on the air mass origin type. Most of the time Marambio and King Sejong stations are affected by Easterly air masses, whereas Halley gets air masses mainly from the Weddell sea marginal and consolidated pack ice. Not only the sea spray primary aerosols and gas to particle secondary aerosols sources, but also the different air masses impacting the research stations should be kept in mind when deliberating upon different aerosol precursors sources across research stations. We provide evidence that both primary and secondary components from pelagic ...