Humidity changes and possible forcing mechanisms over the last millennium in arid Central Asia

Hydroclimate changes have exerted a significant influence on the historical trajectory of ancient civilizations in arid Central Asia where the central routes of the Silk Road have been hosted. However, the climate changes at different time scales and their possible forcing mechanisms over the last m...

Full description

Bibliographic Details
Main Authors: Feng, Shengnan, Liu, Xingqi, Shi, Feng, Mao, Xin, Li, Yun, Wang, Jiaping
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/cp-2021-137
https://cp.copernicus.org/preprints/cp-2021-137/
Description
Summary:Hydroclimate changes have exerted a significant influence on the historical trajectory of ancient civilizations in arid Central Asia where the central routes of the Silk Road have been hosted. However, the climate changes at different time scales and their possible forcing mechanisms over the last millennium remain unclear due to low-resolution records. Here, we provide a continuous high-resolution humidity history in arid Central Asia over the past millennium based on the ~1.8-year high-resolution multiproxy records with good chronological control from Lake Dalongchi in the central Tianshan Mountains. Generally, the climate was dry during the Medieval Warm Period (MWP) and Current Warm Period (CWP), and wet during the Little Ice Age (LIA), which could be attributed to the influence of the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO). Furthermore, we find that the humidity oscillation was dramatic and unstable at multidecadal to century-scale, especially within the LIA. The continuous wavelet analysis and wavelet coherence show that the humidity oscillation is modulated by the Gleissberg cycle at the century-scale and by the quasi-regular period of El NiƱo-Southern Oscillation (ENSO) at the multidecadal scale. Our findings suggest that the effect of the solar cycle and the quasi-regular period of ENSO should be seriously evaluated for hydroclimate predictions and climate simulations in arid Central Asia in the future.