Cosmogenic isotope measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size

During the middle to late Holocene (8.2 ka BP to present), the Greenland Ice Sheet (GrIS) was smaller than its current configuration. Determining the exact dimensions of the Holocene ice-sheet minimum and the duration that the ice margin rested inboard of its current position remains challenging. Co...

Full description

Bibliographic Details
Main Authors: Young, Nicolás E., Lesnek, Alia J., Cuzzone, Josh K., Briner, Jason P., Badgeley, Jessica A., Balter-Kennedy, Alexandra, Graham, Brandon L., Cluett, Allison, Lamp, Jennifer L., Schwartz, Roseanne, Tuna, Thibaut, Bard, Edouard, Caffee, Marc W., Zimmerman, Susan R. H., Schaefer, Joerg M.
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/cp-2020-111
https://cp.copernicus.org/preprints/cp-2020-111/
Description
Summary:During the middle to late Holocene (8.2 ka BP to present), the Greenland Ice Sheet (GrIS) was smaller than its current configuration. Determining the exact dimensions of the Holocene ice-sheet minimum and the duration that the ice margin rested inboard of its current position remains challenging. Contemporary retreat of the GrIS from its historical maximum extent in southwestern Greenland is exposing a landscape that holds clues regarding the configuration and timing of past ice-sheet minima. To quantify the duration of the time the GrIS margin was near its modern extent we develop a new technique on Greenland that utilizes in situ cosmogenic 10 Be- 14 C- 26 Al in bedrock samples that have become ice free only in the last few decades by the retreating ice-sheet margin at Kangiata Nunaata Sermia (n = 12 sites; KNS), southwest Greenland. To maximize the utility of this approach, we refine the deglaciation history of the region with stand-alone 10 Be measurements (n = 49) and traditional 14 C ages from sedimentary deposits contained in proglacial-threshold lakes. We combine our reconstructed ice-margin history in the KNS region with additional geologic records from southwestern Greenland and recent model simulations of GrIS change, to constrain the timing of the GrIS minimum in southwest Greenland, the magnitude of Holocene inland GrIS retreat, and explore the regional climate history influencing Holocene ice-sheet behavior. Our 10 Be- 14 C- 26 Al measurements reveal that 1) KNS retreated behind its modern margin just before 10 ka, but likely stabilized near the present GrIS margin for several thousand years before retreating farther inland, and 2) pre-Holocene 10Be detected in several of our sample sites is most easily explained by several thousand years of surface exposure during the Last Interglaciation. Moreover, our new results indicate that the minimum extent of the GrIS likely occurred after ~ 5 ka, and the GrIS margin may have approached its eventual historical maximum extent as early as ~ 2 ka. Recent simulations of GrIS change are able to match the geologic record of ice-sheet change in regions dominated by surface mass balance, but produce a poorer model-data fit in areas influenced by oceanic and dynamic processes. Simulations that achieve the best model-data fit suggest that inland retreat of the ice margin driven by early to middle Holocene warmth may have been mitigated by increased precipitation. Triple 10 Be- 14 C- 26 Al measurements in recently deglaciated bedrock provide a new tool to help decipher the duration of smaller-than-present ice over multiple timescales. Modern retreat of the GrIS margin in southwest Greenland is revealing a bedrock landscape that was also exposed during the migration of the GrIS margin towards its Holocene minimum extent, but has yet to tap into a landscape that remained ice covered throughout the entire Holocene.