The middle-to-late Eocene greenhouse climate, modelled using the CESM 1.0.5

While the early Eocene has been considered in many modelling studies, detailed simulations of the middle and late Eocene climate are currently scarce. To get a better understanding of both Antarctic glaciation at the Eocene-Oligocene transition (~34 Ma) and late middle Eocene warmth, it is vital to...

Full description

Bibliographic Details
Main Authors: Baatsen, Michiel, Heydt, Anna S., Huber, Matthew, Kliphuis, Michael A., Bijl, Peter K., Sluijs, Appy, Dijkstra, Henk A.
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/cp-2020-29
https://cp.copernicus.org/preprints/cp-2020-29/
Description
Summary:While the early Eocene has been considered in many modelling studies, detailed simulations of the middle and late Eocene climate are currently scarce. To get a better understanding of both Antarctic glaciation at the Eocene-Oligocene transition (~34 Ma) and late middle Eocene warmth, it is vital to have an adequate reconstruction of the middle-to-late Eocene climate. Results of higher (CMIP5-like) resolution coupled climate simulations are represented here using the Community Earth System Model (CESM) version 1. Two middle-to-late Eocene cases are considered with the same general boundary conditions but a different radiative forcing, using a new detailed 38 Ma geography reconstruction. Under 4× pre-industrial concentrations (PIC) of both CO 2 (i.e. 1120 ppm) and CH 4 (~2700 ppb), equilibrium sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ~Bartonian) proxies. Being generally cooler, the simulated climate under 2× PIC forcing is a good analog for that of the late Eocene (38–34 Ma; ~Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are realistic. The reconstructed 38 Ma climate has a reduced equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation and ice accounts for a global mean 5–7 °C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. These simulations effectively show that a realistic middle-to-late Eocene climate can be reconstructed without the need for greenhouse gas concentrations much higher than proxy estimates (i.e. ~500–1200 ppm CO 2 ). Equilibrium climate sensitivity is reduced (0.62 °C/W m 2 3.2 °C warming between 38 Ma 2× PIC and 4× PIC) compared to that of the present-day climate (0.79 °C/W m 2 3.1 °C per CO 2 doubling). Despite very limited sea ice and snow cover in both 38Ma cases, the model still shows a factor ~2 polar amplification in response to a further increase of atmospheric greenhouse gas concentrations. High latitudes in the modelled Eocene climate are mainly kept warm by an altered radiative balance in combination with global changes in geography and the absence of polar ice sheets compared to the pre-industrial reference.