Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

We study the initiation of a Marinoan Snowball Earth (~635 million years before present) with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate sh...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Voigt, A., Abbot, D. S., Pierrehumbert, R. T., Marotzke, J.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/cp-7-249-2011
https://cp.copernicus.org/articles/7/249/2011/
Description
Summary:We study the initiation of a Marinoan Snowball Earth (~635 million years before present) with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI), whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI) is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings.