Temporal variations of surface mass balance over the last 5000 years around Dome Fuji, Dronning Maud Land, East Antarctica

We reconstructed surface mass balance (SMB) around Dome Fuji, Antarctica, over the last 5000 years using the data from 15 shallow ice cores and seven snow pits. The depth–age relationships for the ice cores were determined by synchronizing them with a layer-counted ice core from West Antarctica (WAI...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Oyabu, Ikumi, Kawamura, Kenji, Fujita, Shuji, Inoue, Ryo, Motoyama, Hideaki, Fukui, Kotaro, Hirabayashi, Motohiro, Hoshina, Yu, Kurita, Naoyuki, Nakazawa, Fumio, Ohno, Hiroshi, Sugiura, Konosuke, Suzuki, Toshitaka, Tsutaki, Shun, Abe-Ouchi, Ayako, Niwano, Masashi, Parrenin, Frédéric, Saito, Fuyuki, Yoshimori, Masakazu
Format: Text
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.5194/cp-19-293-2023
https://cp.copernicus.org/articles/19/293/2023/
Description
Summary:We reconstructed surface mass balance (SMB) around Dome Fuji, Antarctica, over the last 5000 years using the data from 15 shallow ice cores and seven snow pits. The depth–age relationships for the ice cores were determined by synchronizing them with a layer-counted ice core from West Antarctica (WAIS Divide ice core) using volcanic signals. The reconstructed SMB records for the last 4000 years show spatial patterns that may be affected by their locations relative to the ice divides around Dome Fuji, proximity to the ocean, and wind direction. The SMB records from the individual ice cores and snow pits were stacked to reconstruct the SMB history in the Dome Fuji area. The stacked record exhibits a long-term decreasing trend at <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.037</mn><mo>±</mo><mn mathvariant="normal">0.005</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2081cc1519ead51e5ebde35b6e25c117"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-19-293-2023-ie00001.svg" width="76pt" height="10pt" src="cp-19-293-2023-ie00001.png"/></svg:svg> kg m −2 per century over the last 5000 years in the preindustrial period. The decreasing trend may be the result of long-term surface cooling over East Antarctica and the Southern Ocean and sea ice expansion in the water vapor source areas. The multidecadal to centennial variations of the Dome Fuji SMB after detrending the record shows four distinct periods during the last millennium: a mostly negative period before 1300 CE, a slightly positive period from 1300 to 1450 CE, a slightly negative period from 1450 to 1850 CE with a weak maximum around 1600 CE, and a strong increase after 1850 CE. These variations are consistent with those of previously reconstructed SMB ...