Seasonal flux patterns and carbon transport from low oxygen eddies at the Cape Verde Ocean Observatory: lessons learned from a time series sediment trap study (2009–2016)

Mesoscale eddies are abundant in the eastern tropical North Atlantic and can form an oasis for phytoplankton growth due to local enrichment of nutrients in an otherwise oligotrophic ocean. It is not clear, whether these eddies can efficiently transfer organic carbon and other flux components to dept...

Full description

Bibliographic Details
Main Authors: Fischer, Gerhard, Romero, Oscar, Karstensen, Johannes, Moradi, Nasrollah, Iversen, Morten, Ruhland, Götz, Klann, Marco, Körtzinger, Arne
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/bg-2021-114
https://bg.copernicus.org/preprints/bg-2021-114/
Description
Summary:Mesoscale eddies are abundant in the eastern tropical North Atlantic and can form an oasis for phytoplankton growth due to local enrichment of nutrients in an otherwise oligotrophic ocean. It is not clear, whether these eddies can efficiently transfer organic carbon and other flux components to depth and if they are important for the marine carbon budget. Due to their transient and regionally restricted nature, measurements of eddies’ contribution to bathypelagic particle flux are difficult to obtain. The rare observations of export flux associated with low oxygen eddies have suggested efficient export from the surface to the deep ocean, indicating that organic carbon flux attenuation might be low. Here we report on particle flux dynamics north of the Cape Verde Islands at the oligotrophic Cape Verde Ocean Observatory (CVOO, approx. 17°35’ N/ 24°15’W). This region is a corridor for eddies and low-oxygen eddies regularly passing the position of CVOO between 2009 and 2016, while we collected biogenic and lithogenic particle flux with sediment traps moored at ca. 1 and 3 km water depth. Overall, we observed quite consistent sine-wave flux patterns during the passages of low oxygen eddies in the winters of 2010, 2012 and 2016. We found flux increases in 3 km depth in October-November when the eddies approached CVOO and distinct flux peaks in February–March, clearly exceeding low oligotrophic background fluxes in winter 2011 and showing an enhanced particle flux seasonality. During spring, we observed a stepwise flux decrease leading to summer flux minima. The flux pattern of biogenic silicate (BSi) shows a stronger seasonality compared to organic carbon. Additionally, the deep fluxes of total mass show an unusually higher seasonality compared to the 1 km traps. We assume that BSi and organic carbon/lithogenics had different sources within the eddies. BSi-rich particles may originate at the eddy boundaries where large diatom aggregates are formed due to strong shear, resulting in gravitational settling and, additionally, in an active local downward transport. Organic carbon associated with the lithogenic material is assumed to originate from the interior of eddies or from mixed sources both constituting smaller, dust-ballasted particles. Our findings suggest that the regularly passing low-oxygen Anticyclonic Modewater Eddies (ACME) at CVOO repeatedly release characteristic flux signals to the bathypelagic in the winter-spring season far above the oligotrophic background fluxes and sequester higher organic carbon than expected for oligotrophic settings. However, the reasons for a lower carbon flux attenuation below ACMEs remain elusive.