A new mechanistic understanding of ecophysiological patterns in a widespread alpine dwarf shrub – Refining climate-growth relationships

Considering the recent widespread greening associated with dwarf shrubs in arctic and alpine ecosystems, further understanding of how these shrubs respond to environmental conditions is of crucial importance. Here we present novel insights and propose a new method to monitor shrub growth, using high...

Full description

Bibliographic Details
Main Authors: Dobbert, Svenja, Pape, Roland, Löffler, Jörg
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/bg-2021-99
https://bg.copernicus.org/preprints/bg-2021-99/
Description
Summary:Considering the recent widespread greening associated with dwarf shrubs in arctic and alpine ecosystems, further understanding of how these shrubs respond to environmental conditions is of crucial importance. Here we present novel insights and propose a new method to monitor shrub growth, using high-precision point dendrometers. We analyzed intra- and inter-annual growth patterns of a common evergreen species ( Empetrum nigrum ssp. hermaphroditum ) by measuring its hourly radial stem variability at a micrometer scale over four successive years on exposed ridge positions and along a steep elevational gradient. With the same temporal resolution, we collected near-ground micro-environmental data and identified environmental drivers controlling growth behaviour. Overall, we found high inter-plant variability in growth-defining parameters, but high similarities in growth responses to the micro-environment. Early-season radial growth in spring exhibited high sensitivity to winter thermal conditions and prolonged ground-freezing in spring, suggesting that the evergreen species E. hermaphroditum remains photosynthetically active during the snow-free period, which increases carbohydrate accumulation for early season physiological activities. We discovered a phase of radial stem shrinkage during the winter months, which can be attributed to an active cell water reduction to protect the plant from frost damage. We present the first fine-scale intra-annual growth curves for an alpine dwarf shrub and identify soil moisture availability and winter freezing conditions as the main drivers of radial stem variability, thus forwarding the ongoing debate on the functional mechanisms of greening and browning in arctic and alpine regions.