Photodegradation and biodegradation of dissolved organic matter on the surface of the Greenland Ice Sheet

The surface (supraglacial) environment of the Greenland Ice Sheet (GrIS) is an active site for the storage, transformation and transport of carbon, which is driven by extremely high levels of solar radiation throughout the ablation season. Within the south west of the GrIS, blooms of Streptophyte mi...

Full description

Bibliographic Details
Main Authors: Nicholes, Miranda J., Williamson, Christopher, Tranter, Martyn, Holland, Alexandra, Yallop, Marian, Anesio, Alexandre
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/bg-2020-227
https://www.biogeosciences-discuss.net/bg-2020-227/
Description
Summary:The surface (supraglacial) environment of the Greenland Ice Sheet (GrIS) is an active site for the storage, transformation and transport of carbon, which is driven by extremely high levels of solar radiation throughout the ablation season. Within the south west of the GrIS, blooms of Streptophyte micro-algae (hereafter <q>glacier algae</q>) at abundances of ~ 10 5 cell mL −1 dominate primary production in the surface ice and provide dissolved organic matter (DOM) to the heterotrophic bacterial community. Glacier algae contain photoprotective secondary phenolic pigment that comprises a large proportion of the cell (~ 4 % of the dry weight) and could represent a substantial, additional carbon source for the heterotrophic community. The transformation and degradation of DOM by solar radiation (photodegradation) and heterotrophic communities (biodegradation) represent two crucial controls on DOM composition and quantity; however, the influence of these processes within the surface ice is yet to be constrained. This study therefore assessed responses in the composition and quantity of two carbon sources (glacier algae secondary pigment and surface ice DOM) following exposure to UV, PAR, UV+PAR (photodegradation) and subsequent incubation with bacterial communities isolated from the ambient environment (biodegradation). Our results indicate that exposure to predominantly UV radiation altered the composition of glacier algal pigment and surface ice DOM; however, the quantity of DOM remained constant. Biodegradation caused the greatest changes to both DOM composition and quantity, particularly in surface ice DOM. Secondary pigment extracted from glacier algae was not a highly bioavailable source of carbon and did not support significant growth of surface ice heterotrophic bacterial communities. Conversely, low molecular weight compounds in surface ice DOM were rapidly utilised by heterotrophic bacteria supporting between a 3 and 9-fold increase in bacterial abundance over a 30-day incubation. We found that photodegradation of glacier algal pigment and surface ice DOM did not influence heterotrophic consumption. Photodegradation and biodegradation of DOM in the surface ice habitat are likely intimately linked and act as fundamental controls on the composition and quantity of DOM exported to downstream environments.