Quantification of DOC concentrations in relation with soil properties of soils in tundra and taiga of Northern European Russia
Potential mobilization and transport of Dissolved Organic Carbon (DOC) in subarctic river basins towards the oceans is enormous, because 23–48% of the worlds Soil Organic Carbon (SOC) is stored in northern regions. As climate changes, the amount and composition of DOC exported from these basins are...
Main Authors: | , , |
---|---|
Format: | Text |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://doi.org/10.5194/bgd-7-3189-2010 https://www.biogeosciences-discuss.net/bg-2010-100/ |
Summary: | Potential mobilization and transport of Dissolved Organic Carbon (DOC) in subarctic river basins towards the oceans is enormous, because 23–48% of the worlds Soil Organic Carbon (SOC) is stored in northern regions. As climate changes, the amount and composition of DOC exported from these basins are expected to change. The transfer of organic carbon between soils and rivers results in fractionation of organic carbon compounds. The aim of this research is to determine the DOC concentrations, its fractions, i.e. humic (HA), fulvic (FA), and hydrophilic (HY) acids, and soil characteristics that influence the DOC sorptive properties of different soil types within a tundra and taiga catchment of Northern European Russia. DOC in taiga and tundra soil profiles (soil solution) consisted only of HY and FA, where HY became more abundant with increasing depth. Adsorption of DOC on mineral phases is the key geochemical process for release and removal of DOC from potentially soluble carbon pool. We found that adsorbed organic carbon may desorb easily and can release DOC quickly, without being dependent on mineralization and degradation. Although Extractable Organic Carbon (EOC) comprise only a small part of SOC, it is a significant buffering pool for DOC. We found that about 80–90% of released EOC was previously adsorbed. Fractionation of EOC is also influenced by the fact that predominantly HA and FA adsorbed to soil and therefore also are the main compounds released when desorbed. Flowpaths vary between taiga and tundra and through seasons, which likely affects DOC concentration found in streams. As climate changes, also flowpaths of water through soils may change, especially in tundra caused by thawing soils. Therefore, adsorptive properties of thawing soils exert a major control on DOC leaching to rivers. To better understand the process of DOC ad- and de-sorption in soils, process based soil chemical modelling, which could bring more insight in solution speciation, mineral solubility, and adsorption reactions, is appropriate. |
---|