A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition ( δ 13 C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data e...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: Jenk, Theo Manuel, Rubino, Mauro, Etheridge, David, Ciobanu, Viorela Gabriela, Blunier, Thomas
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/amt-9-3687-2016
https://amt.copernicus.org/articles/9/3687/2016/
Description
Summary:Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition ( δ 13 C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO 2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO 2 mixing ratios and atmospheric δ 13 C and δ 18 O-CO 2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8–13 g operated at −45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO 2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO 2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO 2 and ±0.09 ‰ for δ 13 C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO 2 and δ 13 C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO 2 and 0.11 ‰ for δ 13 C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement, replicate measurements are feasible, allowing the method precision to be improved potentially. Further, new analytical approaches are introduced for the accurate correction of the procedural blank and for a consistent detection of measurement outliers, which is based on δ 18 O-CO 2 and the exchange of oxygen between CO 2 and the surrounding ice (H 2 O).