A Single-Peak-Structured Solar Cycle Signal in Stratospheric Ozone based on Microwave Limb Sounder Observations and Model Simulations

Until now our understanding of the 11-year solar cycle signal (SCS) in stratospheric ozone has been largely based on high quality but sparse ozone profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) II or coarsely resolved ozone profiles from the nadir-viewing Solar Backscatter Ultravi...

Full description

Bibliographic Details
Main Authors: Dhomse, Sandip S., Chipperfield, Martyn P., Feng, Wuhu, Hossaini, Ryan, Mann, Graham W., Santee, Michelle L., Weber, Mark
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/acp-2021-663
https://acp.copernicus.org/preprints/acp-2021-663/
Description
Summary:Until now our understanding of the 11-year solar cycle signal (SCS) in stratospheric ozone has been largely based on high quality but sparse ozone profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) II or coarsely resolved ozone profiles from the nadir-viewing Solar Backscatter Ultraviolet Radiometer (SBUV) satellite instruments. Here, we analyse 16 years (2005–2020) of ozone profile measurements from the Microwave Limb Sounder (MLS) instrument on the Aura satellite to estimate the 11-year SCS in stratospheric ozone. Our analysis of Aura-MLS data suggests a single-peak-structured SCS profile (about 3 % near 4 hPa or 40 km) in tropical stratospheric ozone, which is significantly different to the SAGE II and SBUV-based double-peak-structured SCS. We also find that MLS-observed ozone variations are more consistent with ozone from our control model simulation that uses Naval Research Laboratory (NRL) v2 solar fluxes. However, in the lowermost stratosphere where modelled ozone shows a negligible SCS compared to about 1 % in Aura-MLS data. An ensemble of Ordinary Least Square (OLS) and three regularised (Lasso, Ridge and ElasticNet) linear regression models confirms the robustness of the estimated SCS. Our analysis of MLS and model simulations also shows a large SCS in the Antarctic lower stratosphere that was not seen in earlier studies. We also analyse chemical transport model simulations with alternative solar flux data. We find that in the upper (and middle) stratosphere the model simulation with Solar Radiation and Climate Experiment (SORCE) satellite solar fluxes are also consistent with the MLS-derived SCS and agree well with the control simulation and one which uses Spectral and Total Irradiance Reconstructions (SATIRE) solar fluxes. Hence, our model simulation suggests that with recent adjustments and corrections, SORCE solar fluxes can be used to analyse effects of solar flux variations. Finally, we argue that the overall significantly different SCS compared to earlier estimates might be due to a combination of different factors such as much denser MLS measurements, almost linear stratospheric chlorine loading changes over the analysis period, as well as a stratospheric aerosol layer relatively unperturbed by major volcanic eruptions.