3D simulations of tropospheric ozone depletion events using WRF-Chem

Tropospheric bromine release and ozone depletion events (ODEs) as they commonly occur in the Arctic spring are studied using the regional software WRF-Chem. For this purpose, the MOZART-MOSAIC chemical reaction mechanism is extended by bromine and chlorine reactions as well as an emission mechanism...

Full description

Bibliographic Details
Main Authors: Herrmann, Maximilian, Sihler, Holger, Wagner, Thomas, Platt, Ulrich, Gutheil, Eva
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-2020-952
https://acp.copernicus.org/preprints/acp-2020-952/
Description
Summary:Tropospheric bromine release and ozone depletion events (ODEs) as they commonly occur in the Arctic spring are studied using the regional software WRF-Chem. For this purpose, the MOZART-MOSAIC chemical reaction mechanism is extended by bromine and chlorine reactions as well as an emission mechanism for reactive bromine via heterogeneous reactions on ice and snow surfaces. The simulation domain covers an area of 5,040 km x 4,960 km, centered north of Utqiagvik (formerly Barrow), Alaska, and the time interval from February through May, 2009. Several simulations for different strengths of the bromine emission are conducted and evaluated by comparison with in-situ and ozone-sonde measurements of ozone mixing ratios as well as by comparison with tropospheric BrO vertical column densities (VCDs) from the Global Ozone Monitoring Experiment–2 (GOME-2) satellite instrument. The base bromine emission scheme includes the direct emission of bromine due to bromide oxidation by ozone through the reactive surface ratio β of the ice/snow surface relative to a flat surface. 10 Results of simulations with β = 1.0 agree well with the observations, however, a value of 1.5 performs somewhat better. The bromine emission due to bromide oxidation by ozone is found to be important to provide an initial seed for the bromine explosion. Consideration of halogen chemistry substantially improves the prediction of the ozone mixing ratio with respect to the observations. Meteorological nudging is found to be essential for a good prediction of ODEs over the three months period.