First description and classification of the ozone hole over the Arctic in boreal spring 2020

Ozone data derived from the TROPOMI sensor onboard the Sentinel-5 Precursor satellite are showing an atypical ozone hole feature in the polar region of the Northern hemisphere (Arctic) in spring 2020. A persistent ozone hole pattern with minimum total ozone column values around or below 220 Dobson u...

Full description

Bibliographic Details
Main Authors: Dameris, Martin, Loyola, Diego G., Nützel, Matthias, Coldewey-Egbers, Melanie, Lerot, Christophe, Romahn, Fabian, Roozendael, Michel
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-2020-746
https://www.atmos-chem-phys-discuss.net/acp-2020-746/
Description
Summary:Ozone data derived from the TROPOMI sensor onboard the Sentinel-5 Precursor satellite are showing an atypical ozone hole feature in the polar region of the Northern hemisphere (Arctic) in spring 2020. A persistent ozone hole pattern with minimum total ozone column values around or below 220 Dobson units (DU) was seen for the first time over the Arctic for about 5 weeks in March and early April 2020. Usually an ozone hole with such low total ozone column values has only been observed in the polar Southern hemisphere (Antarctic) in spring over the last 4 decades, but not over the Arctic. The ozone hole pattern was caused by a particularly stable polar vortex in the stratosphere, enabling a persistent cold stratosphere at higher latitudes, a prerequisite for ozone depletion through heterogeneous chemistry. Based on the ERA5 reanalysis from ECMWF, the Northern winter 2019/2020 (from December to March) showed minimum polar cap temperatures consistently below 195 K around 20 km altitude, which enabled enhanced formation of polar stratospheric clouds. The special situation in spring 2020 is compared and discussed in context with two other ozone hole-like features in spring 1997 and 2011 that were showing comparable dynamical conditions in the stratosphere in combination with low total ozone column values. However, during these years total ozone columns below 220 DU over larger areas and over several consecutive days have not been observed. The similarities and differences of the atmospheric conditions of these three events and possible explanations are presented and discussed. It becomes apparent that the monthly mean of the minimum total ozone column value for March 2020 (i.e. 221 DU) was clearly below the respective values found in March 1997 (i.e. 267 DU) and 2011 (i.e. 252 DU), which emphasizes the noteworthiness of the evolution of the polar stratospheric ozone layer in Northern hemisphere spring 2020. These results provide a first description and classification of the development of the Arctic ozone hole in boreal spring 2020 and highlight its peculiarity.