Investigating emission sources and transport of aerosols in Siberia using airborne and spaceborne LIDAR measurements

Airborne backscatter lidar measurements at 532 nm were carried out over Siberia in July 2013 and June 2017. The Russian Tu-134 flew over major Siberian cities (Novosibirsk, Tomsk, Krasnoyarsk, Yakutsk), the gas flaring fields of the Ob valley and Siberian Taiga in order to sample several kinds of Si...

Full description

Bibliographic Details
Main Authors: Zabukovec, Antonin, Ancellet, Gerard, Penner, Iwan E., Arshinov, Mikhail, Kozlov, Valery, Pelon, Jacques, Paris, Jean-Daniel, Kokhanenko, Grigory, Balin, Yuri S., Chernov, Dmitry, Belan, Boris D.
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-2020-195
https://www.atmos-chem-phys-discuss.net/acp-2020-195/
Description
Summary:Airborne backscatter lidar measurements at 532 nm were carried out over Siberia in July 2013 and June 2017. The Russian Tu-134 flew over major Siberian cities (Novosibirsk, Tomsk, Krasnoyarsk, Yakutsk), the gas flaring fields of the Ob valley and Siberian Taiga in order to sample several kinds of Siberian aerosol sources. Aerosol types are derived using the Lagrangian FLEXible PARTicle dispersion model (FLEXPART) simulations, Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD), Infrared Atmospheric Sounding Interferometer (IASI) CO total column and AOD at 10 μm. Forest fire detection is based on NASA Fire Information for Resource Management System (FIRMS) from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) observations and airborne in-situ measurements when available. Six aerosol type could be identified in this work: (i) Dusty aerosol mixture (ii) Ob valley industrial emission (iii) fresh boreal forest fire plumes (iv) aged forest fire plumes (v) pollution over the Tomsk/Novosibirsk region (vi) long range transport of Chinese pollution over Yakutsk. The backscatter to extinction ratio and then the corresponding lidar ratio (LR) were derived for each of these 6 identified aerosol type, using an iterative method based on the Fernald forward inversion constrained by the 10 km MODIS collection 6 AOD distribution closed to the airborne lidar observation. The LR analysis showed that the lowest LR range was obtained for the <q>Dusty Mix</q> case (26–40 sr) and the highest for the urban and industrial pollution from the Tomsk/Novosibirsk area (71–90 sr). The comparison is good with previous estimate of LR according to the aerosol classification. The range of lidar ratio obtained for gas flaring emission (43–60 sr) was lower than the high values encountered in the Tomsk/Novosibirk urban area and has never been characterized using lidar observations. Airborne lidar backscatter ratio vertical structure, aerosol types and integrated LR derived from the airborne data analysis were compared to nearby CALIOP overpasses. These comparisons showed three main differences with the CALIOP LR and aerosol type classification over Siberia: (i) CALIOP aerosol layer can be classified as Elevated smoke instead of Polluted continental and vice versa, but with little influence on the LR value (ii) aging and transport of aerosol layers effect on the CALIOP LR value is not always properly accounted for even when the CALIOP classification is correct (iii) the lack of discrimination between fresh and old fire plume leads to an overestimation of the optical depth for the fresh fires in the CALIOP AOD over the fire source region.