Finely laminated Arctic mixed-phase clouds occur frequently and are correlated with snow

Finely laminated (multi-layer) clouds, which are strongly correlated with precipitation events, have been detected in 3.5 years of high resolution measurements of Arctic mixed-phase clouds using the Canadian Network for the Detection of Atmospheric Composition Change (CANDAC) Rayleigh-Mie-Raman lida...

Full description

Bibliographic Details
Main Authors: McCullough, Emily M., Wing, Robin, Drummond, James R.
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-2020-186
https://www.atmos-chem-phys-discuss.net/acp-2020-186/
Description
Summary:Finely laminated (multi-layer) clouds, which are strongly correlated with precipitation events, have been detected in 3.5 years of high resolution measurements of Arctic mixed-phase clouds using the Canadian Network for the Detection of Atmospheric Composition Change (CANDAC) Rayleigh-Mie-Raman lidar located at Eureka, Nunavut (79.6° N, 85.6° W). Laminated clouds occur on 52 % of days with 24 h measurement coverage from 0–5 km altitude, and on 62 % of cloudy interpretable days. There is an average of 70 laminated cloud days detected per year, with no full year having fewer than 52 detections. Given CRL does not measure on all days of the year, it is probable that the true occurence frequency of laminated clouds at Eureka is much higher. A study was conducted using local weather reports from the nearby Environment and Climate Change Canada (ECCC) weather station. Days with laminated clouds are strongly correlated with snow precipitation, while days with non-laminated clouds and clear sky days are moderately anti-correlated with snow precipitation.