Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations

To better understand the aerosol properties over the Arctic, Antarctic and Tibetan Plateau (TP), the aerosol optical properties were investigated using 13 years of CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) L3 data, and the back trajectories for air masses were also...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Yang, Yikun, Zhao, Chuanfeng, Wang, Quan, Cong, Zhiyuan, Yang, Xingchuan, Fan, Hao
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/acp-21-4849-2021
https://acp.copernicus.org/articles/21/4849/2021/
Description
Summary:To better understand the aerosol properties over the Arctic, Antarctic and Tibetan Plateau (TP), the aerosol optical properties were investigated using 13 years of CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) L3 data, and the back trajectories for air masses were also simulated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results show that the aerosol optical depth (AOD) has obvious spatial- and seasonal-variation characteristics, and the aerosol loading over Eurasia, Ross Sea and South Asia is relatively large. The annual-average AODs over the Arctic, Antarctic and TP are 0.046, 0.024 and 0.098, respectively. Seasonally, the AOD values are larger from late autumn to early spring in the Arctic, in winter and spring in the Antarctic, and in spring and summer over the TP. There are no significant temporal trends of AOD anomalies in the three study regions. Clean marine and dust-related aerosols are the dominant types over ocean and land, respectively, in both the Arctic and Antarctic, while dust-related aerosol types have greater occurrence frequency (OF) over the TP. The OF of dust-related and elevated smoke is large for a broad range of heights, indicating that they are likely transported aerosols, while other types of aerosols mainly occurred at heights below 2 km in the Antarctic and Arctic. The maximum OF of dust-related aerosols mainly occurs at 6 km altitude over the TP. The analysis of back trajectories of the air masses shows large differences among different regions and seasons. The Arctic region is more vulnerable to mid-latitude pollutants than the Antarctic region, especially in winter and spring, while the air masses in the TP are mainly from the Iranian Plateau, Tarim Basin and South Asia.