Volatile organic compound fluxes in a subarctic peatland and lake

Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate. We measured the ecosystem-...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Seco, Roger, Holst, Thomas, Matzen, Mikkel Sillesen, Westergaard-Nielsen, Andreas, Li, Tao, Simin, Tihomir, Jansen, Joachim, Crill, Patrick, Friborg, Thomas, Rinne, Janne, Rinnan, Riikka
Format: Other/Unknown Material
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-20-13399-2020
https://acp.copernicus.org/articles/20/13399/2020/
Description
Summary:Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate. We measured the ecosystem-level surface–atmosphere VOC fluxes using the eddy covariance technique at a shallow subarctic lake and an adjacent graminoid-dominated fen in northern Sweden during two contrasting periods: the peak growing season (mid-July) and the senescent period post-growing season (September–October). In July, the fen was a net source of methanol, acetaldehyde, acetone, dimethyl sulfide, isoprene, and monoterpenes. All of these VOCs showed a diel cycle of emission with maxima around noon and isoprene dominated the fluxes ( 93±22 µ mol m −2 d −1 , mean ± SE). Isoprene emission was strongly stimulated by temperature and presented a steeper response to temperature ( Q 10 =14.5 ) than that typically assumed in biogenic emission models, supporting the high temperature sensitivity of arctic vegetation. In September, net emissions of methanol and isoprene were drastically reduced, while acetaldehyde and acetone were deposited to the fen, with rates of up to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">6.7</mn><mo>±</mo><mn mathvariant="normal">2.8</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4d3200e0a60dd0dfb9c4ba1ba34ec29c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13399-2020-ie00001.svg" width="52pt" height="10pt" src="acp-20-13399-2020-ie00001.png"/></svg:svg> µ mol m −2 d −1 for acetaldehyde. Remarkably, the lake was a sink for acetaldehyde and acetone during both periods, with average fluxes up to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">19</mn><mo>±</mo><mn mathvariant="normal">1.3</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1a614838e19a973c2aa5578bdc8baf79"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13399-2020-ie00002.svg" width="49pt" height="10pt" src="acp-20-13399-2020-ie00002.png"/></svg:svg> µ mol m −2 d −1 of acetone in July and up to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">8.5</mn><mo>±</mo><mn mathvariant="normal">2.3</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6692681513c122ab72a76fdac9baf1cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13399-2020-ie00003.svg" width="52pt" height="10pt" src="acp-20-13399-2020-ie00003.png"/></svg:svg> µ mol m −2 d −1 of acetaldehyde in September. The deposition of both carbonyl compounds correlated with their atmospheric mixing ratios, with deposition velocities of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.23</mn><mo>±</mo><mn mathvariant="normal">0.01</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c757fc7ba63dd25503f2603dcdae0a8c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13399-2020-ie00004.svg" width="64pt" height="10pt" src="acp-20-13399-2020-ie00004.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.68</mn><mo>±</mo><mn mathvariant="normal">0.03</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="fc72c6e10a9e5fee64c54cddcf504591"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13399-2020-ie00005.svg" width="64pt" height="10pt" src="acp-20-13399-2020-ie00005.png"/></svg:svg> cm s −1 for acetone and acetaldehyde, respectively. Even though these VOC fluxes represented less than 0.5 % and less than 5 % of the CO 2 and CH 4 net carbon ecosystem exchange, respectively, VOCs alter the oxidation capacity of the atmosphere. Thus, understanding the response of their emissions to climate change is important for accurate prediction of the future climatic conditions in this rapidly warming area of the planet.