Gaseous, PM2.5 mass, and speciated emission factors from laboratory chamber peat combustion

Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Watson, John G., Cao, Junji, Chen, L.-W. Antony, Wang, Qiyuan, Tian, Jie, Wang, Xiaoliang, Gronstal, Steven, Ho, Steven Sai Hang, Watts, Adam C., Chow, Judith C.
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/acp-19-14173-2019
https://www.atmos-chem-phys.net/19/14173/2019/
Description
Summary:Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency (MCE) <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>=</mo><mn mathvariant="normal">0.82</mn><mo>±</mo><mn mathvariant="normal">0.08</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="66pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="8f12f3d4d3810e9be6b29cbe44c42662"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00001.svg" width="66pt" height="10pt" src="acp-19-14173-2019-ie00001.png"/></svg:svg> ). Average fuel-based EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="304cc11e101ca2ea948d7e1f8bd141ca"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00002.svg" width="18pt" height="10pt" src="acp-19-14173-2019-ie00002.png"/></svg:svg> (carbon dioxide) are highest (1400 ± 38 g kg −1 ) and lowest (1073 ± 63 g kg −1 ) for the Alaskan and Russian peats, respectively. EF CO (carbon monoxide) and EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">4</mn></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="17pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="9e31c76b8daf1e55847267acb0ad825e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00003.svg" width="17pt" height="10pt" src="acp-19-14173-2019-ie00003.png"/></svg:svg> (methane) are ∼12 %–15 % and ∼0.3 %–0.9 % of EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b1d82231c8451aea75badcff7793dd11"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00004.svg" width="18pt" height="10pt" src="acp-19-14173-2019-ie00004.png"/></svg:svg> , in the range of 157–171 and 3–10 g kg −1 , respectively. EFs for nitrogen species are at the same magnitude as EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">4</mn></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="17pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="7962a24cd06a5d2ea59d07ae0b7afe6c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00005.svg" width="17pt" height="10pt" src="acp-19-14173-2019-ie00005.png"/></svg:svg> , with an average of 5.6 ± 4.8 and 4.7 ± 3.1 g kg −1 for EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow class="chem"><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">3</mn></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="17pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="89d5a246426b5274ba0a3336503bb5a0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00006.svg" width="17pt" height="10pt" src="acp-19-14173-2019-ie00006.png"/></svg:svg> (ammonia) and EF HCN (hydrogen cyanide); 1.9±1.1 g kg −1 for EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b21a03ea8237bdbfe34ba194ef5dc514"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00007.svg" width="18pt" height="10pt" src="acp-19-14173-2019-ie00007.png"/></svg:svg> (nitrogen oxides); and 2.4±1.4 and 2.0 ± 0.7 g kg −1 for EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>y</mi></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="17pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="ab0dcf94c5a54bf93d1693e16ebe5a7b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00008.svg" width="17pt" height="11pt" src="acp-19-14173-2019-ie00008.png"/></svg:svg> (total reactive nitrogen) and EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow class="chem"><msub><mi mathvariant="normal">N</mi><mn mathvariant="normal">2</mn></msub><mi mathvariant="normal">O</mi></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b817462035d1de7587e2993e52f26d03"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00009.svg" width="18pt" height="10pt" src="acp-19-14173-2019-ie00009.png"/></svg:svg> (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of ∼2 and ∼7 d to compare fresh (upstream) and aged (downstream) emissions. Filter-based EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M31" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow><msub><mi mathvariant="normal">PM</mi><mn mathvariant="normal">2.5</mn></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2c8e86879956b3a04fcf5d9bd38fcf40"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00010.svg" width="23pt" height="10pt" src="acp-19-14173-2019-ie00010.png"/></svg:svg> varied by > 4-fold (14–61 g kg −1 ) without appreciable changes between fresh and aged emissions. The majority of EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M33" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow><msub><mi mathvariant="normal">PM</mi><mn mathvariant="normal">2.5</mn></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="8ab96d3c0adcd25ec010e82d71b755bc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00011.svg" width="23pt" height="10pt" src="acp-19-14173-2019-ie00011.png"/></svg:svg> consists of EF OC (organic carbon), with EF OC ∕ EF <math xmlns="http://www.w3.org/1998/Math/MathML" id="M37" display="inline" overflow="scroll" dspmath="mathml"><msub><mi/><mrow><msub><mi mathvariant="normal">PM</mi><mn mathvariant="normal">2.5</mn></msub></mrow></msub></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2aef2c8de4117568d536da75b1d60680"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00012.svg" width="23pt" height="10pt" src="acp-19-14173-2019-ie00012.png"/></svg:svg> ratios in the range of 52 %–98 % for fresh emissions and ∼14 %–23 % degradation after aging. Reductions of EF OC ( ∼7 –9 g kg −1 ) after aging are most apparent for boreal peats, with the largest degradation in low-temperature OC1 that evolves at < 140 ∘ C, indicating the loss of high-vapor-pressure semivolatile organic compounds upon aging. The highest EF Levoglucosan is found for Russian peat ( ∼16 g kg −1 ), with ∼35 %–50 % degradation after aging. EFs for water-soluble OC (EF WSOC ) account for ∼20 %–62 % of fresh EF OC . The majority (> 95 %) of the total emitted carbon is in the gas phase, with 54 %–75 % CO 2 , followed by 8 %–30 % CO. Nitrogen in the measured species explains 24 %–52 % of the consumed fuel nitrogen, with an average of 35 ± 11 %, consistent with past studies that report <math xmlns="http://www.w3.org/1998/Math/MathML" id="M52" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">3</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="be3917116a757c94c03299ca4ff6f78d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-14173-2019-ie00013.svg" width="31pt" height="14pt" src="acp-19-14173-2019-ie00013.png"/></svg:svg> to 2∕3 of the fuel nitrogen measured in biomass smoke. The majority (> 99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % as NH 3 and 9.5 % as HCN. N 2 O and NO y constituted 5.7 % and 2.9 % of consumed fuel nitrogen. EFs from this study can be used to refine current emission inventories.