Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017

The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Ar...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Knudsen, Erlend M., Heinold, Bernd, Dahlke, Sandro, Bozem, Heiko, Crewell, Susanne, Gorodetskaya, Irina V., Heygster, Georg, Kunkel, Daniel, Maturilli, Marion, Mech, Mario, Viceto, Carolina, Rinke, Annette, Schmithüsen, Holger, Ehrlich, André, Macke, Andreas, Lüpkes, Christof, Wendisch, Manfred
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/acp-18-17995-2018
https://www.atmos-chem-phys.net/18/17995/2018/
Description
Summary:The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the 35 -day period of the campaigns, using near-surface and upper-air meteorological observations, as well as operational satellite, analysis, and reanalysis data. Over the campaign period, short-term synoptic variability was substantial, dominating over the seasonal cycle. During the first campaign week, cold and dry Arctic air from the north persisted, with a distinct but seasonally unusual cold air outbreak. Cloudy conditions with mostly low-level clouds prevailed. The subsequent 2 weeks were characterized by warm and moist maritime air from the south and east, which included two events of warm air advection. These synoptical disturbances caused lower cloud cover fractions and higher-reaching cloud systems. In the final 2 weeks, adiabatically warmed air from the west dominated, with cloud properties strongly varying within the range of the two other periods. Results presented here provide synoptic information needed to analyze and interpret data of upcoming studies from ACLOUD/PASCAL, while also offering unprecedented measurements in a sparsely observed region.