Skeletal muscle connective tissue:molecular diversity in structural elements

The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation. Collagen,...

Full description

Bibliographic Details
Main Author: Brüggemann, Dagmar Adeline
Format: Book
Language:English
Published: Department of Food Science, University of Copenhagen 2009
Subjects:
Online Access:https://curis.ku.dk/portal/da/publications/skeletal-muscle-connective-tissue(f6ab0030-005b-11df-825d-000ea68e967b).html
Description
Summary:The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation. Collagen, being the major protein in connective tissue, has been extensively investigated with regard to its relation to meat tenderness, but the results have been rather conflicting. Meat from older animals is tougher than that from younger animals, and changes in the properties of the collagen due to accumulation of intermolecular cross-links are thought to be the cause, though no cross-link could be identified, that could confirm this hypothesis. Yet, although it has never been possible to demonstrate a direct relation between the total amount of collagen and tenderness, it is still generally agreed that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets, by applying novel 3-D microscopical methods to the structural elements in connective tissue, revealing its occurrence, origin, molecular composition and thermal behaviour. Aspects of five areas of connective tissue research are investigated and discussed, involving the extracellular matrix and its collagen composition, the organizational structure of connective tissue, the role of connective tissue in muscle contraction and the generation of force, metabolic regulation of arterial structure focusing on associated collagen changes, and a new highly-specific technique for following in three-dimensions changes in the structure of fibrous collagen and myofibers at high-resolution. The results demonstrate that the collagen composition in the extra cellular matrix of Gadus morhua fish muscle is much more complex than previously anticipated, as it contains type III, IV, V and VI collagen in addition to type I. The vascular systems of muscle have been visualized in their full complexity, including the ‘neglected' lymphatic capillaries at the level of the endomysium. These findings serve to remind us that muscle contraction is not only about force generation and transmission, but also about nutrient supply and waste removal. Consequently, functional structures, ensuring "tissue maintenance" must form a major role of connective tissue, in addition that is to the force transmitting structures one typically finds in muscle. Vascular structures have also been shown to change their mechanical properties with age and it has been shown in this thesis that alpha-ketoglutarate, a tricarboxylic acid cycle metabolite, has the potential to control the metabolism of this particular tissue. Finally, a new microscopic method is introduced which allows the study of thermal denaturation of fibrillar collagen and myofibers in real time without any label interference, revealing associated structural changes as well as pinpointing local divergence.