DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND

Siliciclastic and volcaniclastic sediments in a volcanic rifted-margin succession may experience a complex diagenetic history during burial that can have a large impact on sandstone reservoir properties. To understand such changes, variations in initial sediment composition and succeeding diagenetic...

Full description

Bibliographic Details
Published in:Journal of Sedimentary Research
Main Authors: Weibel, Rikke, Vosgerau, Henrik, Larsen, Michael, Guarnieri, Pierpaolo, Kokfelt, Thomas Find, Dideriksen, Knud, Balić-Žunić, Tonci, Bell, Brian
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://curis.ku.dk/portal/da/publications/diagenetic-effect-on-reservoir-quality-of-siliciclastic-and-volcaniclastic-sandstones-from-a-paleogene-volcanic-rifted-margin-east-greenland(2ad88e7a-ec0b-46de-81d6-1d5a2520ba91).html
https://doi.org/10.2110/jsr.2021.127
Description
Summary:Siliciclastic and volcaniclastic sediments in a volcanic rifted-margin succession may experience a complex diagenetic history during burial that can have a large impact on sandstone reservoir properties. To understand such changes, variations in initial sediment composition and succeeding diagenetic changes have been studied for a Paleogene outcrop analogue in the Kangerlussuaq area, East Greenland. The nature of the mafic volcanics-bearing succession, which consists of intra-volcanic sandstones, accommodated over quartz-rich pre-volcanic fluvial sandstones, are comparable to the settings of recently discovered hydrocarbon-producing sandstones in the Faroe–Shetland Basin on the conjugate Atlantic margin. Our petrographic and provenance investigations of the pre- and intra-volcanic sandstones are supported by geochemical and X-ray diffraction analyses. The intra-volcanic sandstones were deposited in shallow marine environments with mixed siliciclastic and volcaniclastic input, the latter rich in felsic to mafic volcanic rock fragments and feldspar grains. Similar zircon age distributions of pre- and intra-volcanic sandstones support a continued supply from the same siliciclastic sediment source after the onset of volcanism. Variations in initial detrital grain and pore-fluid (fresh to marine) compositions resulted in different diagenetic changes in the pre- and intra-volcanic sandstones. However, where siliciclastic sandstones were overlain by volcaniclastic rocks rather than massive lava flows, the diagenetic changes resemble those of the intra-volcanic sandstones. The cementing phases are typically quartz, illite (probably illitized kaolinite), and rare anatase in the pre-volcanic sandstones. Chlorite, calcite, zeolite/ feldspar, opal/quartz, and titanite are characteristic authigenic phases in the intra-volcanic sandstones. Precipitation of different minerals in the pre- and intra-volcanic sandstones show that the detrital composition (and to a lesser extent depositional environment) played a major role during ...