Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data

Solar irradiance is a key environmental control, and accurate spatial and temporal solar irradiance data are important for a wide range of applications related to energy and carbon cycling, weather prediction, and climate change. This study presents a satellite-based scheme for the retrieval of all-...

Full description

Bibliographic Details
Published in:International Journal of Remote Sensing
Main Authors: Houborg, Rasmus Møller, Søgaard, Henrik, Emmerich, W., Moran, Susan
Format: Article in Journal/Newspaper
Language:Danish
Published: 2007
Subjects:
Online Access:https://curis.ku.dk/portal/da/publications/inferences-of-allsky-solar-irradiance-using-terra-and-aqua-modis-satellite-data(12b51b00-c5ba-11dc-bee9-02004c4f4f50).html
https://doi.org/10.1080/01431160701241902
Description
Summary:Solar irradiance is a key environmental control, and accurate spatial and temporal solar irradiance data are important for a wide range of applications related to energy and carbon cycling, weather prediction, and climate change. This study presents a satellite-based scheme for the retrieval of all-sky solar irradiance components, which links a physically based clear-sky model with a neural network version of a rigorous radiative transfer model. The scheme exploits the improved cloud characterization and retrieval capabilities of the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, and employs a cloud motion tracking scheme for the production of hourly solar irradiance data throughout the day. The scheme was implemented for the Island of Zealand, Denmark (56° N, 12° E) and Southern Arizona, USA (31° N, 110° W) permitting model evaluation for two highly contrasting climates and cloud environments. Information on the atmospheric state was provided by MODIS data products and verifications against AErosol RObotic NETwork (AERONET) data demonstrated usefulness of MODIS aerosol optical depth and total precipitable water vapour retrievals for the delineation of spatial gradients. However, aerosol retrievals were significantly biased for the semi-arid region, and water-vapour retrievals were characterized by systematic deviations from the measurements. Hourly global solar irradiance data were retrieved with overall root mean square deviations of 11.5% (60 W m -2 ) and 26.6% (72 W m -2 ) for Southern Arizona and the Island of Zealand, respectively. For both regions, hourly satellite estimates were shown to be more reliable than pyranometer measurements from ground stations only 15 km away from the point of interest, which is comparable to the accuracy level obtainable from geostationary satellites with image acquisitions every 15-30 min. The proposed scheme is particularly useful for solar irradiance mapping in high-latitude regions as data from geostationary satellites ...