The Design of a Mobile Robot for Instrument Network Deployment in Antarctica *

Abstract- This paper describes the design and fabrication of a low cost, solar powered mobile robot to support a variety of scientific missions on the Antarctic plateau during the austral summer. Key to the overall design is maintaining a lightweight vehicle by using a high strength and stiffness ho...

Full description

Bibliographic Details
Main Authors: Laura Ray, Er Price, Er Streeter, Daniel Denton, James H. Lever
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.4695
http://engineering.dartmouth.edu/crobots/papers/Crobots_ICRA2005_A4.pdf
Description
Summary:Abstract- This paper describes the design and fabrication of a low cost, solar powered mobile robot to support a variety of scientific missions on the Antarctic plateau during the austral summer. Key to the overall design is maintaining a lightweight vehicle by using a high strength and stiffness honeycomb-fiberglass composite chassis, custom wheels and drivetrain mounting components, and high efficiency, low cost solar cells. A solar power availability analysis is detailed, demonstrating that in the low elevation of the summer sun and high albedo of pristine snow, a robot with panels on all sides exposed to direct and reflected sunlight provides ample power, even under worst-case insolation conditions. A relatively simple navigation and control algorithm provides low-bandwidth path planning and course correction. A description of potential instruments to be deployed and scientific studies aided by networks of such autonomous solar robots is provided. Index Terms – Mobile Robot, Solar Power, Antarctica. I.