Climate Europe Precipitation

The oxygen isotopic composition of land-snail shells may provide insight into the source region and trajectory of precipitation. Last glacial maximum (LGM) gastropod shells were sampled from loess from Belgium to Serbia and modern land-snail shells both record δ18O values between 0 ‰ and −5‰. There...

Full description

Bibliographic Details
Main Authors: Natalie M. Kehrwald A, William D. Mccoy B, Jeanne Thibeault C, Stephen J. Burns B, Eric A. Oches D, Land Snails
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.698.9829
Description
Summary:The oxygen isotopic composition of land-snail shells may provide insight into the source region and trajectory of precipitation. Last glacial maximum (LGM) gastropod shells were sampled from loess from Belgium to Serbia and modern land-snail shells both record δ18O values between 0 ‰ and −5‰. There are significant differences in mean fossil shell δ18O between sites but not among genera at a single location. Therefore, we group δ18O values from different genera together to map the spatial distribution of δ18O in shell carbonate. Shell δ18O values reflect the spatial variation in the isotopic composition of precipitation and incorporate the snails ' preferential sampling of precipitation during the warm season. Modern shell δ18O decreases in Europe along a N–S gradient from the North Sea inland toward the Alps. Modern observed data of isotopes in precipitation (GNIP) demonstrate a similar trend for low-altitude sites. LGM shell δ18O data show a different gradient with δ18O declining toward the ENE, implying a mid-Atlantic source due to increased sea ice and a possible southern displacement of the westerly jet stream. Balkan LGM samples show the influence of a Mediterranean source, with δ18O values decreasing northward. © 2010 University of Washington. Published by Elsevier Inc. All rights reserved.