EVOLUTION OF A STORM-DRIVEN CLOUDY BOUNDARY LAYER IN THE ARCTIC

Abstract. To investigate the processes of development and maintenance of low-level clouds during major synoptic events, the cloudy boundary layer under stormy conditions during the summertime Arctic has been studied using observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experime...

Full description

Bibliographic Details
Main Authors: Jun Inoue, Judith A. Curry
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2004
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.692.2122
http://curry.eas.gatech.edu/currydoc/Inoue_BLM117.pdf
Description
Summary:Abstract. To investigate the processes of development and maintenance of low-level clouds during major synoptic events, the cloudy boundary layer under stormy conditions during the summertime Arctic has been studied using observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and large-eddy simulations (LES). On 29 July 1998, a stable Arctic cloudy boundary-layer event was observed after the passage of a synoptic low pressure system. The local dynamic and thermodynamic structure of the boundary layer was determined from aircraft measurements including the analysis of turbulence, cloud micro-physics and radiative properties. After the upper cloud layer advected over the existing cloud layer, the turbulent kinetic energy (TKE) budget indicated that the cloud layer below 200m was maintained predominantly by shear production. Observations of longwave radiation showed that cloud-top cooling at the lower cloud top has been suppressed by radiative effects of the upper cloud layer. Our LES results demonstrate the importance of the combination of shear mixing near the surface and radiative cooling at the cloud top in the storm-driven cloudy boundary layer. Once the low-level cloud reaches a certain height, depending on the amount of cloud-top cooling, the two sources of TKE production begin to separate in space under continuous stormy conditions, suggesting one possible mechanism for the cloud layering. The sensitivity tests suggest that the storm-driven cloudy boundary layer is possibly switched to the shear-driven system due to the advection of upper clouds or to the buoyantly driven system due to the lack of wind shear. A comparison is made of this storm-driven boundary layer with the buoyantly driven boundary layer previously described in the literature.