NCEP NOTES Statistical, 5-Day Tropical Cyclone Intensity Forecasts Derived from Climatology and Persistence

Tropical cyclone track forecasting has improved recently to the point at which extending the official forecasts of both track and intensity to 5 days is being considered at the National Hurricane Center and the Joint Typhoon Warning Center. Current verification procedures at both of these operationa...

Full description

Bibliographic Details
Main Authors: John A. Knaff, Mark Demaria, Charles R. Sampson, James M. Gross
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2002
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.670.7818
http://rammb.cira.colostate.edu/resources/docs/Statistical_Knaff.pdf
Description
Summary:Tropical cyclone track forecasting has improved recently to the point at which extending the official forecasts of both track and intensity to 5 days is being considered at the National Hurricane Center and the Joint Typhoon Warning Center. Current verification procedures at both of these operational centers utilize a suite of control models, derived from the ‘‘climatology’ ’ and ‘‘persistence’ ’ techniques, that make forecasts out to 3 days. To evaluate and verify 5-day forecasts, the current suite of control forecasts needs to be redeveloped to extend the forecasts from 72 to 120 h. This paper describes the development of 5-day tropical cyclone intensity forecast models derived from climatology and persistence for the Atlantic, the eastern North Pacific, and the western North Pacific Oceans. Results using independent input data show that these new models possess similar error and bias characteristics when compared with their predecessors in the North Atlantic and eastern North Pacific but that the west Pacific model shows a statistically significant improvement when compared with its forerunner. Errors associated with these tropical cyclone intensity forecast models are also shown to level off beyond 3 days in all of the basins studied. 1.