Article Synthesis, Characterization and in Vitro Evaluation of New Composite Bisphosphonate Delivery Systems

Abstract: In this study, new composite bisphosphonate delivery systems were obtained from polyurethanes (PUs) and nanocrystalline hydroxyapatite (HA). The biodegradable PUs were first synthesized from poly(ε-caprolactone) diols (PCL diols), poly(ethylene adipate) diol, 1,6-hexamethylene diisocyanate...

Full description

Bibliographic Details
Main Authors: Joanna Kolmas, Marcin Sobczak, Ewa Olędzka, Grzegorz Nałęcz-jawecki, Cezary Dębek
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2014
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.662.7586
http://www.mdpi.com/1422-0067/15/9/16831/pdf/
Description
Summary:Abstract: In this study, new composite bisphosphonate delivery systems were obtained from polyurethanes (PUs) and nanocrystalline hydroxyapatite (HA). The biodegradable PUs were first synthesized from poly(ε-caprolactone) diols (PCL diols), poly(ethylene adipate) diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol and HA. Moreover, the PCL diols were synthesized by the ring-opening polymerization catalysed by the lipase from Candida antarctica. Next, composite drug delivery systems for clodronate were prepared. The mechanical properties of the obtained biomaterials were determined. The cytotoxicity of the synthesized polymers was tested. The preliminary results show that the obtained composites are perspective biomaterials and they can be potentially applied in the technology of implantation drug delivery systems.