1 Impact of Ocean Model Resolution on CCSM Climate Simulations

The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal glob...

Full description

Bibliographic Details
Main Authors: Ben P. Kirtman, Cecilia Bitz, Frank Bryan, William Collins, John Dennis, Nathan Hearn, James L. Kinter Iii, Richard Loft, Clement Rousset, Leo Siqueira, Cristiana Stan, Mariana Vertenstein
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.646.6936
http://www.atmos.washington.edu/~bitz/Kirtman_etal2011.pdf
Description
Summary:The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to document how increased ocean model resolution impacts the simulation of large-scale climate variability. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5)- the forerunner to CCSM4. Two experiments are reported here. The first experiment (i.e., control) is a 155-year present-day climate simulation using a 0.5º atmosphere component (zonal resolution 0.625º meridional resolution 0.5º) coupled to ocean and sea-ice components with zonal resolution of 1.2º and meridional resolution varying from 0.27º at the equator to 0.54º in the mid-latitudes. The second simulation uses the same atmospheric model coupled to 0.1º ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface