Energy- and mass-balance observations of the

ABSTRACT. We present results from a comprehensive field study carried out near Barrow, Alaska, USA, designed to characterize local- to intermediate-scale sea-ice processes in the Arctic coastal zone of central importance to the annual cycle and evolution of the coastal sea ice. Included in this are...

Full description

Bibliographic Details
Main Authors: Jeremy Harbeck, Thomas H. George, Andrew Mahoney
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1999
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.634.3439
http://www.igsoc.org/annals/44/a44a101.pdf
Description
Summary:ABSTRACT. We present results from a comprehensive field study carried out near Barrow, Alaska, USA, designed to characterize local- to intermediate-scale sea-ice processes in the Arctic coastal zone of central importance to the annual cycle and evolution of the coastal sea ice. Included in this are the behavior of the snow cover of the ice and adjacent tundra and lake system; concurrent studies of mass balance of the sea ice and lake ice; interaction of shortwave radiation with the shore-fast ice and the adjacent land surfaces; evolution of the area coverage and distribution of the various surface types; and the resulting regional albedo values. Maximum snow depths decreased during 2000–02 from 0.38m to 0.26m. Ice-melt rates in 2001 were 0.05 and 0.028md–1 at the top and bottom of the sea ice respectively, two to three times larger than observations from the central Arctic. Detailed surface results combined with aircraft photography were used to calculate regional albedos for the late spring and early summer of 2001. Values ranged from 0.8 for all cold snow-covered surfaces to approximately 0.4 for melting sea ice and lake ice vs 0.18 for bare tundra. Regional and surface-based values of cumulative shortwave radiation entering the ice were consistent, indicating that albedo sampling on a scale of 200m can provide a useful representation for regional sea-ice albedo.