eingereicht an der

Stochastic information, to be understood as “information gained by the application of stochastic methods”, is proposed as a tool in the assessment of changes in climate. This thesis aims at demonstrating that stochastic information can improve the consideration and reduction of uncertainty in the as...

Full description

Bibliographic Details
Main Authors: In Der Wissenschaftsdisziplin Theoretische Physik, Mathematisch-naturwissenschaftlichen Fakultät, Thomas Christopher Kleinen
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.633.345
http://opus.kobv.de/ubp/volltexte/2005/538/pdf/kleinen.pdf
Description
Summary:Stochastic information, to be understood as “information gained by the application of stochastic methods”, is proposed as a tool in the assessment of changes in climate. This thesis aims at demonstrating that stochastic information can improve the consideration and reduction of uncertainty in the assessment of changes in climate. The thesis consists of three parts. In part one, an indicator is developed that allows the determination of the proximity to a critical threshold. In part two, the tolerable windows approach (TWA) is extended to a probabilistic TWA. In part three, an integrated assessment of changes in flooding probability due to climate change is conducted within the TWA. The thermohaline circulation (THC) is a circulation system in the North Atlantic, where the circulation may break down in a saddle-node bifurcation under the influence of climate change. Due to uncertainty in ocean models, it is currently very difficult to determine the distance of the THC to the bifurcation point. We propose a new indicator to determine the system’s proximity to the bifurcation point by considering the THC as a stochastic system and using the information contained in the fluctuations of the circulation around the mean state. As the system is moved