Mean Climatic Characteristics in High Northern Latitudes in an Ocean-Sea Ice-Atmosphere Coupled Model

Emphasizing the model’s ability in mean climate reproduction in high northern latitudes, results from an ocean-sea ice-atmosphere coupled model are analyzed. It is shown that the coupled model can simulate the main characteristics of annual mean global sea surface temperature and sea level pressure...

Full description

Bibliographic Details
Main Authors: Liu Xiying (uh, Zhang Xuehong (üæö, Yu Yongqiang (| r, Yu Rucong (xh
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2003
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.622.1535
http://www.lasg.ac.cn/uploadfiles/file/papers/2004/2004-lxy-zxh-yyq-yrc-8613.pdf
Description
Summary:Emphasizing the model’s ability in mean climate reproduction in high northern latitudes, results from an ocean-sea ice-atmosphere coupled model are analyzed. It is shown that the coupled model can simulate the main characteristics of annual mean global sea surface temperature and sea level pressure well, but the extent of ice coverage produced in the Southern Hemisphere is not large enough. The main distribution characteristics of simulated sea level pressure and temperature at 850 hPa in high northern latitudes agree well with their counterparts in the NCEP reanalysis dataset, and the model can reproduce the Arctic Oscillation (AO) mode successfully. The simulated seasonal variation of sea ice in the Northern Hemisphere is rational and its main distribution features in winter agree well with those from observations. But the ice concentration in the sea ice edge area close to the Eurasian continent in the inner Arctic Ocean is much larger than the observation. There are significant interannual variation signals in the simulated sea ice concentration in winter in high northern latitudes and the most significant area lies in the Greenland Sea, followed by the Barents Sea. All of these features agree well with the results from observations. Key words: coupled model, arctic oscillation, sea ice 1.