Until recently, in situ U-Pb zircon geochronology could be carried out only using ion microprobes, requiring lengthy analysis times of c. 20 minutes. However, new developments in laser ablation inductively coupled plasma mass spectrometer technologies have resulted in zircon geochronology tech-nique...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.619.9737
http://www.geus.dk/publications/bull/nr10/nr10_p49-52.pdf
Description
Summary:Until recently, in situ U-Pb zircon geochronology could be carried out only using ion microprobes, requiring lengthy analysis times of c. 20 minutes. However, new developments in laser ablation inductively coupled plasma mass spectrometer technologies have resulted in zircon geochronology tech-niques that are much faster, simpler, cheaper, and more pre-cise than before (e.g. Frei et al. 2006, this volume). Analyses approaching the precision obtained via ion microprobe can now be undertaken in 2–4 minutes using instruments such as the 213 nm laser ablation (LA) system coupled with Element2 sector-field inductively coupled plasma mass spec-trometer (SF-ICP-MS) housed at the Geological Survey of Denmark and Greenland (GEUS). The up to tenfold decrease in analytical time means that zircon geochronology can now be used in a much wider range of studies.