Conversion of nepheline to sodalite during subsolidus processes in alkaline rocks

Cathodoluminescence (CL) petrography of nepheline syenites of the Igaliko complex, Gardar province, South Greenland shows that sodalites possess embayed contacts against nepheline, and have formed by a process of metasomatic replacement. This texture is demonstrated clearly by CL, since sodalite lum...

Full description

Bibliographic Details
Main Author: Adrian A. Finch
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1991
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.604.8321
http://www.minersoc.org/pages/Archive-MM/Volume_55/55-380-459.pdf
Description
Summary:Cathodoluminescence (CL) petrography of nepheline syenites of the Igaliko complex, Gardar province, South Greenland shows that sodalites possess embayed contacts against nepheline, and have formed by a process of metasomatic replacement. This texture is demonstrated clearly by CL, since sodalite luminesces bright orange and nepheline is poorly luminescent. The transformation from nepheline to sodalite results in a volume change which leads to a network of fractures in which deep-blue luminescent fluorite is precipitated. Fluorite is formed since the chlorination process involved in the transformation causes localised reductions of the salinity of the fluid and therefore adecrease in the solubility of fluorite. Sodalite-fluorite xtures observed using CL allow sodalites of secondary origin in alkaline igneous rocks to be identified. Nephelines and sodalites, when observed using scanning electron microscopy, possess small micropores. By analogy with recent work on alkali feldspars, pervasive alteration of nephelines may occur by fluid flow assisted by a permeable micropore network.