2002), Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

[1] The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992–1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The co...

Full description

Bibliographic Details
Main Authors: Ian A. Renfrew, John C. King, Thorsten Markus
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.597.7998
http://www.uea.ac.uk/~e046/reprints/coastal_polynya_reprint2002.pdf
Description
Summary:[1] The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992–1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997–1998 allowed a large