Do general circulation models underestimate the natural variability in the Arctic climate

The authors examine the natural variability of the arctic climate system simulated by two very different models: the Geophysical Fluid Dynamics Laboratory (GFDL) global climate model, and an area-averaged model of the arctic atmosphere–sea ice–upper-ocean system called the polar cap climate model, t...

Full description

Bibliographic Details
Main Authors: D. S. Battisti, C. M. Bitz, R. E. Moritz
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1997
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.580.466
http://www.atmos.washington.edu/~david/bbm1997.pdf
Description
Summary:The authors examine the natural variability of the arctic climate system simulated by two very different models: the Geophysical Fluid Dynamics Laboratory (GFDL) global climate model, and an area-averaged model of the arctic atmosphere–sea ice–upper-ocean system called the polar cap climate model, the PCCM. A 1000-yr integration of the PCCM is performed in which the model is driven by a prescribed, stochastic atmospheric energy flux convergence (D), which has spectral characteristics that are identical to the spectra of the observed D. The standard deviation of the yearly mean sea ice thickness from this model is 0.85 m; the mean sea ice thickness is 3.1 m. In contrast, the standard deviation of the yearly averaged sea ice thickness in the GFDL climate model is found to be about 6 % of the climatological mean thickness and only 24 % of that simulated by the PCCM. A series of experiments is presented to determine the cause of these disparate results. First, after changing the treatment of sea ice and snow albedo in the (standard) PCCM model to be identical thermodynamically to that in the GFDL model, the PCCM is driven with D from the GFDL control integration to demonstrate that the PCCM model produces an arctic climate similar to that of the GFDL model. Integrations of the PCCM are then examined in which the different prescriptions of the sea ice treatment (GFDL vs standard PCCM) and D