Sorption of dissolved organic matter by mineral soils of the Siberian forest tundra

Because of low net production in arctic and subarctic surface water, dissolved organic matter (DOM) discharged from terrestrial settings plays an important role for carbon and nitrogen dynamics in arctic aquatic systems. Sorption, typically controlling the export of DOM from soil, may be influenced...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.579.9056
http://www.agr.hokudai.ac.jp/env/ctc_siberia/bibliography/pdf/Kawahigashi2006.pdf
Description
Summary:Because of low net production in arctic and subarctic surface water, dissolved organic matter (DOM) discharged from terrestrial settings plays an important role for carbon and nitrogen dynamics in arctic aquatic systems. Sorption, typically controlling the export of DOM from soil, may be influenced by the permafrost regime. To confirm the potential sorptive control on the release of DOM from permafrost soils in central northern Siberia, we examined the sorption of DOM by mineral soils of Gelisols and Inceptisols with varying depth of the active layer. Water-soluble organic matter in the O horizons of the Gelisols was less (338 and 407mgCkg1) and comprised more dissolved organic carbon (DOC) in the hydrophobic fraction (HoDOC) (63 % and 70%) than in the O horizons of the Inceptisols (686 and 706mgCkg1, 45 % and 48%HoDOC). All A and B horizons from Gelisols sorbed DOC strongly, with a preference for HoDOC. Almost all horizons of the Inceptisols showed a weaker sorption of DOC than those of the Gelisols. The C horizons of the Inceptisols, having a weak overall DOC sorption, sorbed C in the hydrophilic fraction (HiDOC) stronger than HoDOC. The reason for the poor overall sorption and